
bc

Copyright � 2006 by Steven H. Comstock 1 bc

The bc programming language

� Shell Commands: bc

� What Good Is bc?

Shell Commands: bc

� This command invokes an interpreting calculator that can do
calculations in any number base from 2 to 16 (although it is intended
for bases 2, 8, 10, and 16 primarily)

Syntax

bc [-i] [-l] [file] [...]

Where

� i indicates interactive mode

� Note: in non-interactive mode, if an error occurs, a message
is issued and the bc interpreter is terminated; in interactive
mode, if an error occurs, a message is issued and operation
continues

� Note: in interactive mode, there is a prompt (the colon
character (:) to indicate bc is waiting for input)

� l (lower case alpha letter EL) indicates bc should load a library of
standard functions before continuing

� file is a file containing bc instructions

� If no file is specified, bc reads from stdin until it encounters
the quit instruction

� Notice you can have multiple files, and they are processed in
the order specified on the bc statement

Copyright � 2006 by Steven H. Comstock 2 bc

Shell Commands: bc, continued

� At its simplest level, bc reads in a number and displays it back

� Behind the scenes, you need to realize that bc maintains two
variables that effect all operations: ibase and obase

� ibase is the number base you are entering numbers in

� When you key in a number, bc assumes it is in the number
base of ibase

� You can change ibase by an assignment instruction; e.g.:
ibase = 3

� If an input number is not correct format for ibase (for
example, entering 177 when ibase is set to 3; (you're not
supposed to have digits greater than the ibase - 1), bc
assumes each excessive digit is base 10 and each OK digit
is base ibase)

� In our example, 177 would be interpreted as 1*9 + 7*3 +
7*1 = 9 + 21 + 7 = 37

� Internally, all numbers are stored as strings of numeric digits
and converted to internal formats each time they are used

� The interpretation of these strings depends on the current
setting of ibase

� obase is the number base to be used for output displays

� bc always converts results to obase before displaying

� You can change obase by an assignment instruction; e.g.:
obase = 7

� As a handy converter, then, key in a number and press
<Enter> and the number converted to obase is displayed

Copyright � 2006 by Steven H. Comstock 3 bc

Shell Commands: bc, continued

� You can enter simple calculations

� 4+3

� bc returns this value on the next stdout line:

7

� bc always keeps the last value in the special variable . (dot)

� Numbers in bc are composed of: optional sign (+ or -) followed by
zero or more digits, optional decimal point (.) followed by zero or
more digits; numbers can be arbitrarily long

� There must be at least one digit either before or after the decimal
point, if present

� Note there cannot be any commas, although there may be
spaces

� 123456 is valid

� 123 456 is valid

� 123,456 is invalid

� Uppercase A-F represent hex digits, with decimal values of
10-15, as usual

� Note: use "ibase = A" to reset ibase to base 10 if necessary

Copyright � 2006 by Steven H. Comstock 4 bc

Shell Commands: bc, continued

� bc allows the use of variables (also called identifiers in the literature)

� Variable names are case sensitive and composed of any number
of letters, digits, and underscore (_) characters

� The first of which must be a lower-case letter

� Variable names are global for the duration of the bc run

� You can create your own bc functions in the bc programming
language (details in a bit)

� Function names have the same rule as variable names

� A reference to a function must always be followed by a set of
parentheses containing zero or more arguments separated by
commas (e.g.: sqrt(in_num))

� You can create a variable in bc that is an array, a list of elements

� Array names follow the same rules as variable names; only one
dimensional arrays are supported

� A reference to an array must always be followed by brackets with
a subscript (e.g.: scores[tot_num])

� You do not need to declare the size of an array; bc creates
elements dynamically as needed (initialized to 0)

Copyright � 2006 by Steven H. Comstock 5 bc

Shell Commands: bc, continued

� You can enter assignment instructions

� a=4 defines global variable a
and gives it an initial value of 4

� a=a+b undefined variables (b in this case)
are given initial value of 0; you can
perform basic numeric operations
using variables or numeric literals

� a = a - 5 notice spaces are OK, but not required

� b = b * a

� c = b ^ a exponentiation

� sum = sum / count

� Now we must introduce an important element of bc: scale

� Unlike let, which only works with integers, bc works with numbers
of any precision and scale

Copyright � 2006 by Steven H. Comstock 6 bc

Shell Commands: bc, continued

� The scale is the number of digits to be retained to the right of the
decimal point when doing calculations

� bc maintains a built-in variable called scale to specify this

� The default value for scale is 0

� If you invoke bc with the -l option, scale is set to 20

� You can explicitly change scale with an assignment instruction:
e.g.: scale = 12

� Each numeric value has an implicit scale when entered; the scale
setting determines the scale of a calculation result

� The maximum value for scale is maintained in the configuration
variable BC_SCALE_MAX

� The IBM-supplied value for this is currently 32767

� Long numbers are output by bc with a maximum of 70 characters
per line; if a number is longer than a line, a backslash (\) is
appended to the display to indicate the value is continued on the
next line (all lines are displayed at once)

� Internal calculations are always done in decimal (base 10)

� So the number of places after the decimal point are dictated by
scale when numbers are expressed in decimal form

Copyright � 2006 by Steven H. Comstock 7 bc

Shell Commands: getconf

� As a digression, configuration variables are variables set by IBM and
possibly modified by your staff at installation time that specify the
limits, defaults, and sources of information for your installation

� You can view all your current configuration variables by issuing

the shell command getconf -a

� The relevant configuration variables here are:

� BC_BASE_MAX - maximum number supported for obase

� BC_DIM_MAX - maximum number of elements in an array

� BC_SCALE_MAX - maximum scale supported

� BC_STRING_MAX - maximum number of characters in a bc
instruction

Copyright � 2006 by Steven H. Comstock 8 bc

Shell Commands: bc, continued

� The implementation of bc on UNIX System Services includes a
number of extensions to the standards, which will be noted as
encountered

� For example, in the standards, identifier names are only one
character long

Copyright � 2006 by Steven H. Comstock 9 bc

Shell Commands: bc, continued

� The scale used when doing calculations is determined this way:

� Addition and subtraction of two operands, A + B or A - B

max(scale(A), scale(B))

� Multiply A * B

min(scale(A) + scale(B), max(scale, scale(A), scale(B))

� Divide A / B

scale

� Remainder: A % B

First, calculate A / B using current scale; then calculate
remainder as A - (A / B) * B using scale of
max(scale+scale(B), scale(A))

� Exponentiation: A * B (B must be an integer)

min(scale(A) * abs(B), max(scale, scale(A))

Copyright � 2006 by Steven H. Comstock 10 bc

Shell Commands: bc, continued

� When you enter a line into bc, if an assignment is involved, it
changes the value of the target variable, of course

� The right hand component of assignment instructions can
involve numbers, variables, calculations, and logical expressions

� But even lines that perform calculations without an assignment
produce a result

� For example, entering a * 2 produces a result that is twice the
value in variable a, but no variable is changed

� By way of contrast, the increment and decrement operations can
be entered without being part of an assignment and a result is
produced and a variable is changed

++var adds one to var; result is new value of var

var++ adds one to var; result is old value of var

--var subtracts one from var, result is new value of var

var-- subtracts one from var, result is old value of var

Copyright � 2006 by Steven H. Comstock 11 bc

Shell Commands: bc, continued

� bc supports the traditional short hand assignment operators of C; in
particular...

� var ^= value is the same as var = var ^ value

� var *= value is the same as var = var * value

� var /= value is the same as var = var / value

� var %= value is the same as var = var % value

� var += value is the same as var = var + value

� var -= value is the same as var = var - value

Copyright � 2006 by Steven H. Comstock 12 bc

Shell Commands: bc, continued

� bc also supports relational operators: these return 1 if true or 0 if
false:

� value1 == value2 returns 1 if and only if the values are equal

� value1 <= value2 returns 1 if and only if the first value is less than
or equal to the second value

� value1 >= value2 returns 1 if and only if the first value is greater
than or equal to the second value

� value1 != value2 returns 1 if and only if the values are not equal

� value1 < value2 returns 1 if and only if the first value is less than
the second value

� value1 > value2 returns 1 if and only if the first value is greater
than the second value

Copyright � 2006 by Steven H. Comstock 13 bc

Shell Commands: bc, continued

� Also, logical operators:

� A && B returns 1 if A is true (nonzero) and B is true; note that if
A is not true, B is not even evaluated

� A || B returns 1 if A is true or B is true; note that if A is true, B is
not even evaluated

� !A - returns 1 if A is false, 0 if A is true

� -A is a unary minus (takes the negative of a number)

� (A) - indicates that expression A should be evaluated before any
other operations are performed in the instruction

� Example: if you enter a = b +5, bc will not display anything; if
you enter a = (b+5), bc will calculate b+5, display the result,
then place the result into a

� Complex operations may be constructed in the usual fashion

� Including using parentheses to explicitly indicate the order of
precedence

� Note that bc's default order of precedence is not the same as C's
in every case, so explicitly using parentheses in complex
expressions is always a good idea

Copyright � 2006 by Steven H. Comstock 14 bc

Shell Commands: bc, continued

� As indicated earlier, not only can bc be interactive, but you may also
construct a file (script) of bc instructions

bc instructions include

� expressions - bc calculates the value

� assignments - bc calculates a value and puts result into a variable

� comments - begin with /*, end with */ (can cross line boundaries)

� Also, a pound sign (#) can be used to indicate the rest of the line
is a comment (this is an extension to the standard)

� quit - terminate bc (if no quit is encountered in a script, you
remain in bc even after the end of the script is reached)

� conditional instructions (if - discussed shortly)

� looping instructions (for, while, break - discussed shortly)

� void expression - calculate the value of expression but do not
display it; useful, for example, with increments and decrements:
void ++able

� sh statement - send a [single line] statement to the shell for
execution

� miscellaneous (braces, print, sequence) - discussed shortly

Copyright � 2006 by Steven H. Comstock 15 bc

Shell Commands: bc, continued

� Some quick points

� quoted strings - bc simply displays the string, with no newline
character following

� So, for example, the lines

b=5
a = 3.14 * (b^2)
"The result is "
a

� will display

The result is 78.50

� The semi-colon can be used to separate multiple instructions on a
single line, so an equivalent script would be:

b=5
a = 3.14 * (b^2)
"The result is " ; a

� Or even:

b=5 ; a = 3.14 * (b^2) ; "The result is " ; a

� This represents the sequence construct

Copyright � 2006 by Steven H. Comstock 16 bc

Shell Commands: bc, continued

� The print instruction

Syntax

print [expression] [, expression] [...]

Where

� If there are no expressions, a blank line is printed

� Each expression may be a quoted string, a numeric literal, a
numeric variable, or an arithmetic expression

� Expressions must be separated by commas

� All expressions on one print instruction are displayed on a single
line

� A single space is displayed between adjacent numbers, but not
between numbers and strings (so be sure to include spaces as
necessary in quoted strings)

� If the last argument is null, subsequent output continues on the
same line

� The print instruction of the bc command is an extension to the
standards

Copyright � 2006 by Steven H. Comstock 17 bc

Shell Commands: bc, continued

� The if instruction in bc

Syntax

if (relation_test) instruction1 [else instruction2]

� The parentheses are needed as shown

� If relation_test is true, instruction1 is executed, otherwise
instruction2 is executed

� instruction1 and instruction2 can be simple instructions, for
example:

if (score[sub] == 0) "score not used"

if (score[sub] == 0) "score not used"
else total += score[sub]

Copyright � 2006 by Steven H. Comstock 18 bc

Shell Commands: bc, continued

� The if instruction in bc, continued

� If you want to perform multiple instructions on the if or the else
portion, you must enclose the instructions in braces

� And, the opening brace must be on the same line as the if or else
clause; for example

if (score[sub] == 0) { "score not used"
} else { print "score[",sub,"] = ", score[sub] ; total += score[sub] }

� or, perhaps better:

if (score[sub] == 0) { "score not used"
} else {

print "score[",sub,"] = ", score[sub]
total += score[sub]
}

� Note, too, that if the else portion uses braces, the if must also,
and the closing brace of the if must be on the same line as the
else

Copyright � 2006 by Steven H. Comstock 19 bc

Shell Commands: bc, continued

� The for instruction in bc

� This instruction allows for looping - for repeating a set of
instructions as long as some condition / relation remains true

Syntax

for (init_expr; relation; end_expr) instruction

Where

� init_expr is some expression that initializes a variable

� relation is any of the relation tests we've already seen

� Typically checking the initialized variable for a limit or boundary

� end_expr is an expression that indicates what to do after
executing instruction and before testing relation

� Typically updating the initialized and tested variable

� instruction is a single instruction or a braces-bound series of
instructions

� Although this is similar to the C construct, unlike C all three
parts must be explicitly present for the bc version

Copyright � 2006 by Steven H. Comstock 20 bc

Shell Commands: bc, continued

� The for instruction in bc, continued

Examples

for (i = 0; i<=no_scores; ++i) total += scores[i]
print "total scores = ",total

for (i = 0; i <= no_scores; ++i) {
print "scores[",i,"] = ",scores[i]
total += scores[i]

}
print "total scores = ",total

for (i = 0; i <= no_scores; ++i) {
if (scores[i] == 0) {

print "score of zero not used. i = ",i
} else {

print "scores[",i,"] = ",scores[i]
total += scores[i]

}
{

print "total scores = ",total

� Notice that whenever you have braces-bounded instructions, the
open brace has to be on the same line as the starting instruction
(if and else as seen before, for as seen here, while as we shall see
shortly)

Copyright � 2006 by Steven H. Comstock 21 bc

Shell Commands: bc, continued

� The while instruction in bc

� This instruction also allows for looping

� But it doesn't include the initialization and loop stepping logic
explicitly - you have to add that

Syntax

while (relation) instruction

� We show the same code we used with for using while this time
on the next page

Copyright � 2006 by Steven H. Comstock 22 bc

Shell Commands: bc, continued

� The while instruction in bc, continued

Examples

i = 0
while (i <= no_scores) {total += scores[i]; ++i}
print "total scores = ",total

i = 0
while (i <= no_scores) {

print "scores[",i,"] = ",scores[i]
total += scores[i]
++i

}
print "total scores = ",total

i = 0
while (i <= no_scores) {

if (scores[i] == 0) {
print "score of zero not used. i = ",i
} else {

print "scores[",i,"] = ",scores[i]
total += scores[i]

}
++i

}
print "total scores = ",total

� Now, these don't act exactly like the earlier code using for

� The explicit ++i incrementing displays the result value each time,
where the embedded ++i in the for does not

Copyright � 2006 by Steven H. Comstock 23 bc

Shell Commands: bc, continued

� The while instruction in bc, continued

To get the examples to produce the exact same output:

i = 0
while (i <= no_scores) {total += scores[i]; i = i + 1}
print "total scores = ",total

i = 0
while (i <= no_scores) {

print "scores[",i,"] = ",scores[i]
total += scores[i]
i = i + 1

}
print "total scores = ",total

i = 0
while (i <= no_scores) {

if (scores[i] == 0) {
print "score of zero not used. i = ",i
} else {

print "scores[",i,"] = ",scores[i]
total += scores[i]

}
i = i + 1

}
print "total scores = ",total

� You have to either convert ++i to i = i +1 or code as void ++i

Copyright � 2006 by Steven H. Comstock 24 bc

Shell Commands: bc, continued

� The break instruction in bc

� Now, suppose you want to jump out of a for or while loop early -
the break instruction is for you

� Using the most complex of our previous sets of examples, here's
how you would stop your calculations when you found, say, a
score of zero:

for (i = 0; i <= no_scores; ++i) {
if (scores[i] == 0) {

print "score of zero not used. i = ",i

break
} else {

print "scores[",i,"] = ",scores[i]
total += scores[i]

}
{

print "total scores = ",total

i = 0
while (i <= no_scores) {

if (scores[i] == 0) {
print "score of zero not used. i = ",i

break
} else {

print "scores[",i,"] = ",scores[i]
total += scores[i]

}
i = i + 1

}
print "total scores = ",total

Copyright � 2006 by Steven H. Comstock 25 bc

Shell Commands: bc, continued

� Functions in bc

� There are nine built-in functions supplied with bc:

� length(expression) - returns number of decimal digits (including
before and after the decimal point) in expression

� For example, length(2593.88768) is 9

� scale(expression) - returns the scale of expression

� For example, scale(2593.88768) is 5

� Note: length(expression) - scale(expression) tells you how
many decimal digits to the left of the decimal point in
expression

� sqrt(expression) - calculate the square root of expression; scale
of result is max(scale, scale(expression))

Copyright � 2006 by Steven H. Comstock 26 bc

Shell Commands: bc, continued

� Functions in bc, continued

� There are nine built-in functions supplied with bc, continued:

� These functions are available only if you invoke bc with the l
(lowercase letter el) flag

� arctan(expression) or a(expression) or atan(expression) - return
the arctangent of expression

� bessel(integer,expression) or j(integer,expression) or

jn(integer,expression) - return the Bessel function of expression
with order integer

� cos(expression) or c(expression) - return the cosine of
expression

� exp(expression) or e(expression) - return the exponential of

expression (that is, eexpression
)

� ln(expression) or l(expression) or log(expression) - return the
natural logarithm of expression

� sin(expression) or s(expression) - return the sine of expression

Copyright � 2006 by Steven H. Comstock 27 bc

Shell Commands: bc, continued

� User functions in bc

� You can also create your own functions in bc

� A function definition ...

� Begins with a define statement that names any parameters and
specifies the body in braces

� The body contains any of the instructions we've discussed in this

section plus possibly two other: auto and return

� The resulting function is invoked through a function reference in
one or more bc instructions

� Usually, function definitions are included in the body of a bc
script file since there is no include or copy type capability:

define func_x(..) {
.
.
. }
define func_y(...) {
.
.
. }

code, including function references
.
.
.

Copyright � 2006 by Steven H. Comstock 28 bc

Shell Commands: bc, continued

� User functions in bc, continued

� The define instruction specifies the name of the function and a
list of parameters to be passed...

define calc_int(prin,rate)

� Followed by the definition of the function in braces:

define calc_int(prin,rate) {
scale = 2
int = prin * rate
return(int)

}

Notes so far

� prin and rate are parameters, names used only in the function
definition itself

� The return statement passes back a single value that replaces the
function reference at run time, for example:

interest = calc_int(value1,value2)
print "Interest is", interest

� or even just:

print "Interest is", calc_int(value1,value2)

Copyright � 2006 by Steven H. Comstock 29 bc

Shell Commands: bc, continued

� User functions in bc, continued

� Generally speaking, variables in bc code are global

� So variables declared in function definitions are known inside
and outside the functions

� And variables declared outside function definitions are also
known inside and outside the functions

� You use parameters so you can call a function using different
variables

� In a function you can create a local variable by using the auto
instruction:

Syntax

auto variable_name [, variable_name ...]

� All named variables are known only in the function body

� If there is a variable outside the function body of the same name,
they are different variables

� If you have an auto instruction, it must come first in the body of
the function

� Variables declared as auto are initialized to zero on every entry
to the function

Copyright � 2006 by Steven H. Comstock 30 bc

Shell Commands: bc, continued

� User functions in bc, continued

� Both parameters and auto variables may be arrays

� Simply specify with brackets and no subscript:

define avg_score(scores[], no_scores) {
auto i, total
for (i = 0; i <= no_scores; ++i) {

total += scores[i] }
return(total/no_scores)

}

and

define name_reverse(in_names[], num_names) {
auto work_table[]
.
.
.

}

� Note that if a function definition does not have a return
instruction, the function returns on encountering the last
instruction in the definition, with a function value of 0

Copyright � 2006 by Steven H. Comstock 31 bc

What Good Is bc?

� The bc statement is handy for doing interactive calculations

� But suppose you would like to have a bc script invoked from a
shell script

� It turns out this is not simple

� And yet you would like to be able to do something like this:

� Query the person running the shell script for some values

� Call bc to calculate the values and report the result, perhaps
using user-defined functions

� The problem is

� bc instructions cannot reference shell variables, even if the
variables are exported

� You can use echo and read inside a bc script (using the sh ...
instruction), but the values returned can still not be grabbed in the
bc script!

Copyright � 2006 by Steven H. Comstock 32 bc

What Good Is bc?, continued

� The way to take advantage of a bc script from a shell script is

� Use echo and read in the usual fashion to obtain input values in
shell variables

� Use redirection to create a file containing these values assigned
to bc variables

� Have a bc script written that processes the values and, perhaps,
displays the results

� We show an example on the following pages

Copyright � 2006 by Steven H. Comstock 33 bc

What Good Is bc?, continued

� First, here is a pre-written bc script, called bcioc, to process some
variables:

d = a / b
print a," divided by ",b," with scale ",scale," is ",d
quit

� Second, here is a shell script (not a bc script) to gather values, put
them into a bc script file, and then run the file followed by the bcioc
file:

This is a shell script to request two numbers
and pass those numbers to the bc interpreter
for doing a calculation

read var1?"Enter numerator (top number) "
read var2?"Enter denominator (bottom number) "
read var3?"Enter scope (number of decimal places) "

cat <<eee > bcfileo
a = $var1
b = $var2
scale = $var3

eee

bc bcfileo bcioc

� Suppose this shell script is named bciom

Copyright � 2006 by Steven H. Comstock 34 bc

What Good Is bc?, continued

� Now, when bciom is run, the user is prompted for three variables, and
these are placed into var1, var2, and var3

� Next a file is created called bcfileo that contains three assignments -
note that the shell will do variable substitution of the $varn symbols
before the lines are written out

� Finally, bc is invoked and it runs bcfileo followed by bcioc

� Here's an example of running the bciom script:

Enter numerator (top number) 23
Enter denominator (bottom number) 4
Enter scope (number of places to keep in decimal portion) 6
23 divided by 4 with scale 6 is 5.750000

� bc is a rich programming language and can be explored in many ways

Copyright � 2006 by Steven H. Comstock 35 bc

This page intentionally left almost blank.

Copyright � 2006 by Steven H. Comstock 36 bc

